Zeiss 880 User Guide

Table of content

Starting	
Choose the objective	
Insert the sample	
Sample focusing - <i>Locate</i>	
Sample scanning – Acquisition	
Microscope setting (lasers, filters and detectors)	
Fast scan (<i>Live</i> mode)	5
Scanning parameters setting (Acquisition Mode):	6
Detector sensitivity setting (Channels window)	7
Final Snap	
Saving Images	
Ending	
Experiments	
Z-stack	
Z-Stack setting:	
Multi-channel (colour) Z-Stack advice	
Tile Scan (Mosaic)	
Cantered grid	
Bounding Grid, Convex Hull	
Time series	
Positions	
Regions	

Starting

- 1. Main switch ON
- 2. System PC ON
- 3. Components ON
- 4. Fluorescence lamp (If you will use it)
- 5. PC

Do not touch other buttons!

Start Zen Black edition software

- a) Image Processing
- b) Start System for using microscope

Choose the objective

- 1. Choose *Microscope* (1) on control panel and select objective (It can be also done in ZEN software)
- Drop immersion on the objective, if it is necessary (10x, 20x dry, 40x water, 60x, 100x oil)

Insert the sample

- 1. Pull the upper part of the microscope away and open the door
- 2. Go down with objective using focus knob, objective should not touch the glass
- 3. Fix the sample into the insert (holder). Cover glass should be from the bottom side.
- 4. Insert (holder) should be tightly fastened in the microscope (not moving).
- 5. Pull the microscope upper part back

Sample focusing - Locate

Microscope is in standard epifluorescence mode (using BF or fluorescence lamp)

1. select irradiation source (1):

BF button (bright field) - transmission light mode

Buttons DAPI, GFP ... - epifluorescence mode

- 2. Open both shutters (If you are using the fl lamp)
 - a. In the software (2) (Microscope Control)
 - b. Switch under the microscope (3)

(IIN) ZEN 2.3 SP1
File View Acquisition Maintain Macro Tools Window Help
司 🖻 🗟 🎄
Locate Acquisition Processing Maintain
Transmitted Light Off On Reflected Light Off On
Configuration
Assign BF DAPI GFP mRFP
Cy 5 Triple All Off
= Ocular
Microscope Control
Off 1 % Closed
Aperture 0.55
Stage Focus
alpha Plan-Apochromat
100x/1.46 Oil DIC M27
NoneLSM
Off 25 % Closed
Lens 1x
= Incubator
Incubation

3. Focus sample

Recommended way of focusing:

Carefully place the objective as close to the cover glas as you can (chack the distance by your eye while you are turning the focus knob)

Than look into eyepiece and slowly move the objective down (away from cover glass). You should find the focus plane in a while.

Sample scanning – Acquisition

Microscope is in the confocal mode (using lasers)

Microscope setting (lasers, filters and detectors)

You can load the saved settings (1)
You can use the setting from saved image (*Reuse* button, (2))
The reuse button can be also found below the opened picture
You can use *Smart Setup* (3) (automatic settings)
You can set it manually (*Imaging Setup*, advanced users)

Smart Setup – automatic setting

- 1. Click on Smart Setup
- 2. Select the dyes from the list (1)
- 3. Choose one of three possibilities (2):

Fastest – all channels (colours) collects in 1 track

Best signal – every channel is collected separately (sequential collecting)

Smartest - compromise between previous two choices

4. Click on *Apply* (3)

Imaging Setup - advanced manual settings

Select Track (1)

You can define:

Changing tracks during scanning after every line, frame or Z-Stack (2):

This setting remarkably influences the overall acquisition time

Detector type and range (3)

Fluorescence filters (4)

Excitation lasers (5)

You can use the transmission light detector (T-PMT) (6)

Contact technician for support If you need an advice or help!

Fast scan (*Live* mode)

First fast scan for focusing and finding the area of interest

Quality of the pictures from Live scan is small!!!

- 1. Turn lasers on (1) (if they are not on already)
- 2. Wait for Ar laser heating (c.a. 5 min) Ar laser should not be marked by red colour
- 3. Select only 1 track (2) (Channels window)
- 4. click on Live fast scan
- 5. Focus and select the area on the sample
- 6. Stop scanning

If there is nothing to see on Live scan:

- 1 Focus
- 2 Select Track (2)
- 3 Rise Gain (Channels window) (3)

detector sensitivity, generally 500-800

4 Select shorter range on *Histogram* (below live window)

- Check/rise laser intensity, generally 2 (*Channels* window) (4) remember bleaching or sample degradation
- 6. Check microscope setting (lasers, filters, detector....)
- 7. Call for support

Continuous mode!

Live scanning is suitable only for focusing! The quality of the image is very low due to high scan speed and low resolution.

Scanning parameters (detector sensitivity, laser intensity...) for final image should be set in

 Laser
 Laser Lines [nm]
 Power

 Argon
 458,488,514
 On
 ●

 Diods 405-30
 405
 ●
 ●

 Diods 405-30
 405
 ●
 ●

 Laser
 Laser Lines [nm]
 ●
 ●

 Laser
 Laser Lines [nm]
 ●
 ●

 Diode 405-30
 405
 ●
 ●

 Diode 405-30
 405
 ●
 ●

 Diode 405-30
 405
 ●
 ●

 Diode 405-30
 633
 ●
 ●

 Diode 405-30
 633
 ●
 ●

 Argon
 405
 ●
 ●
 ●

 Diode 405-30
 633
 ●
 ●
 ●

 Diode 51-10
 561
 ●
 ●
 ●
 ●

 Dess 561-10
 561
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●

▼ ▲ Channels			🗸 Show all 🛛 📝
Tracks 2	Channels		
Track 1	DsRe		
Track 2			•
✓ ∧ + m		Expand All	Collapse All
Track Configuration 55	5		
Track 1 - LSM			
Lasers 405 458 4	8 8 514 561	633	
🔺 561 nm ———	04		2.8 🛟
Pinhole —			90.5
			1 AU max
DsRe Gain (Maste		-0-3	700 🛟
		0-	2
	-0		1.0
Display			

Scanning parameters setting (Acquisition Mode):

These parameters influence the Continuous scanning mode and final snap.

1. Frame Size (Image Resolution)

X*Y button – sets a standard value of resolution (1)
Optimal – sets highest resolution achievable by chosen objective (2)

Do not use higher resolution than optimal. Quality of the image will not rise, but scan time will be significantly prolonged.

You can use lower resolution for saving time.

2. Scan Speed (3)

The lower speed, the better image quality

(generally between 5-7)

Pixel Dwell – time the laser stays on 1 pixel

Scan Time – time needed for scanning 1 image

3. Averaging (4)

Enhancing the signal/noise ratio

Recommended if *Gain* is high, especially above 800

Generally 2-4, more snaps significantly prolong scan time

It is recommended to use averaging right before taking the final snap. If you want to save time, do not use averaging during working in Continuous mode.

- 4. Scanning Direction (5)
 - ---> One-directional: more precise, slower
 - <---> Bi-directional: less precise, faster
- 5. Scan Area (6)

Allows using Zoom or view field shifting or rotation

Detector sensitivity setting (Channels window)

This setting must be performed for every Track separately!

- 1. Select one Track (1)
- 2. Start scanning in Continuous mode
- 3. Mark *Range Indicator* (*Dimensions* bookmark under live window)

Display oversaturated and undersaturated pixels.

Saturated pixels are red, only few red pixels (not areas) should be present on the image.

4. Tune detector sensitivity:

Set suitable *Pinhole* diameter (button *1AU*) (2). It could be wider for weak 2D samples, but not for Z-Stack.

Set *Gain* value (detector sensitivity, generally between 500 and 800) (**3**) to see only few red pixels (not areas)

More *Gain* = more noise, especially if *Gain* is higher than 800. Can be compensated by *Averaging* (*Acquisition Mode* window) right before the final snap

It is also possible to rise laser power (4) in the case of weak signal and high noise.

This should be performed only for stable samples

Most common laser power is 2%. High laser power (above 10%) can cause autofluorescence, bleaching or sample and dye degradation.

- 5. Tune *Digital Offset* if it is necessary (only few blue pixels should be present) (5)
- 6. Unmark Range Indicator and stop Continuous scan
- 7. Repeat this procedure for every Track

Final Snap

Check *Range Indicator* before taking the final image. Detector sensitivity should be checked especially when pinhole diameter, laser power or scan speed was changed

- 1) Select all Tracks you want to have on the final image
- 2) Use Averaging if the Gain is high
- 3) Take final image using the button *Snap*

AF	0	e t	.	0
Find Focus	Set Exposure	Live	Continuous	Snap

Scanning parameters are the same as in the Continuous mode

Saving Images

Images and Documents window (right site of the screen)

Icon with the paper sheet opens new scanning window $\ensuremath{(1)}$

Icon with flop saves image (2)

Icon with cross closes the image without saving (3)

Unsaved images show warning picture (4)

Folder for saving (Zeiss880): Z:/Tento Počítač/Zeiss880/Oddělení(Lab Number)/Jméno(Name)

Ending

Sample removing

- 1. Pull out upper part of microscope
- 2. Remove sample
- 3. Clean objectives (use ethanol and cleaning tissues to remove the immersion oil), clean the room
- 4. Pull down the upper part of the microscope, close the front door and turn the microscope light off.

If there is another user after me:

- 1. Save and close images
- 2. Switch Ar to Standby mode, do not turn it off!!!
- 2. Do not close ZEN software
- 3. Turn fluorescence lamp off

If I am the last person using microscope:

- 1. Turn Ar laser off (in ZEN software)
- 2. Save and close images
- 3. Close ZEN software and PC
- 4. Wait 5 min until Ar laser fan turn off
- 5. Turn Components, System PC and Main switch off

Write your name into logbook, put everything on right place and turn the light of.

Experiments

Zen SW provides several predefined experiments, which can be combined arbitrarily:

Z-Stack, Time Series, Bleaching, Tile Scan, Positions, Regions The Experiment window will appear after marking experiment box (1) Use *Start Experiment* button for acquisition (2)

Z-stack

Snaps series of scans (slices) along z - axis

The thickness of the slice is determined by pinhole diameter (pinhole is thin shutter in front of the detector). The thinner pinhole = the thinner slice. Pinhole diameter (slice thickness) influent the overall resolution in the z-axis. The thinner slice = more slices contained in Z - stack = better resolution.

The suitable pinhole diameter for reasonable z-axis resolution can be set by 1AU button (Channels window). Better resolution can be achieved using lesser pinhole diameter, but the signal intensity is remarkably reduced. Lesser pinhole diameters are useful only for bright samples.

If you are not interested in z-axis resolution, wider pinhole diameter can be utilized. The overall acquisition time is then reduced.

The slices in Z-stack must overlap in order to include whole area of interest. The recommended overlap is 50%.

Z-Stack setting:

Scanning parameters and detector sensitivity should be set in continuous mode before starting Z-Stack acquisition. Detector sensitivity should be set on the brightest slice.

Always check Range Indicator after Pinhole diameter change.

Z-Stack range

- 1. Mark Z-Stack in the list of experiments
- 2. Start Live scan
- 3. Go to the Z-stack window
- 4. Define the first position using focus knob
- 5. Use Set First button (1)
- 6. Define last position using the focus knob
- 7. Use *Set Last* button Z-Stack range is then defined (2)
- 8. C button displays central slice (3)
- 9. Stop *Live* scanning

Setting for best Z-axis resolution (pinhole is defined):

- 10. Set the pinhole diameter using *1AU* button (*Channels* window) or use slide for lower value.
- 11. Set the slice number using the *Optimal* button (4) (set 50% slice overlap).
- 12. Check Range Indicator and correct the Gain value
- 13. Start Experiment

Setting using slice number (if you are not interested in resolution and want to save time):

- 7. Mark *Slice* (5) in the *Z-Stack* window
- 8. Set number of slices in Z-Stack (6)
- 9. Open *Optimize Sectioning and Step* (7) and use *Match Pinhole* button (8) (set pinhole to 50% overlap)
- 10. Check Range Indicator and correct the Gain value
- 11. Start experiment

Multi-channel (colour) Z-Stack advice

Tracks can be switched after every *Track* (snap) or every *Z-Stack* (*Imaging Setting* window)

Switching after every Z-Stack remarkably shorten the acquisition time

Usable for fixed samples, which did not change in time

Pinhole should be set for the central channel

If there is red, green and blue channel, use green for setting

In the Channels window select central track and use Match Pinhole (8) button

Don't forgot to check Range Indicator before starting

Select only one Track for setting Z-Stack range, all Tracks should be marked right before final acquisition

Tile Scan (Mosaic)

Creates mosaic image by stitching the neighbour snaps together.

Suitable for large samples (bigger than view field) or for overview images.

Scanning parameters and detector sensitivity should be set in continuous mode before starting Tile Scan acquisition. Detector sensitivity should be set on the brightest snap.

Three modes of Tile Scan, use one of three bookmarks:

Cantered grid

Final image is directed by predefined lattice.

1.Define the number of vertical and horizontal snaps (for example 3x3, 4x5, maximum 100x100) (1)

2. Start experiment

Suitable for overview images

How to create an overview image:

- a) Scan overview image in *Cantered* gird mode (do at last 5 x 5 Tile Scan)
- b) Open second scanning window (click to the area which is placed right from the image name and choose 2 containers) (1)
- c) Move Tile scan into the second empty window
- d) Click on the Stage button (2). The Tile Scan is than converted to overview image. White square shows actual position of scanning. This square can be moved by singleclick onto the desired position.
- e) Go back to the first scanning window and start scanning. Scanned position can be changed by clicking on the overview image.

- f) Selected positions can be saved in the *Positions* experiment or they can by use for defining *Bounding* grid or *Convex Hull Tile Scan* experiment
- g) Stage button change the Overview image into the common Tile Scan

🗸 🏭 Tile Scan		🗸 Show all
Centered grid		
Horizontal 5		
Vertical 5		
Overlap 0.00		
Rotation 0.0000		
Bi-directional		
Display current tile or	nly	
	Scan overview ima	age

Bounding Grid, Convex Hull

The gird is defined by selected positions (see pictures on right side)

Add button defines the selected border images (1)

List of marked positions (2)

Comments:

The stitching mistakes are possible in the case of weak or homogenous samples

If you move with the sample during the Overview image using (because of immersion change for example), the selected positions will probably not match to the real positions. It is recommended to make new Overview image after the sample is moved.

Time series

Collects series of images during the time.

Basic setting:

- 1. Mark Time Series in the list of experiments
- 2. Set number of cycles (scans) (1)
- 3. Set interval between cycles (2)

Interval = scan time + rest time

```
Time unit setting (3)
```

Multiple interval setting:

- 1. Open Interval Time area (4)
- 2. Add interval (5)
- Interval can be manually switched during the experiment (highlight interval by mouse click) (6)

Positions

Snaps series of images on predefined positions

It is very practical to make an overview image for defining positions (see Tile Scan experiment), but it is not necessary.

- 1) Make an overview image (see Tile Scan experiment)
- 2) Mark Position experiment
- Go to the desired position on overview image (double click on image), or move to this position using joystick
- 4) Add position/s to the list (1)
- 5) Use Start Experiment Button

- 🗄 I	ositions			🗸 Show all [
Position List			Sample Carrier		
No.	х [µm]	y [µm]	z [µm]	offset (µm	
1	13713.573	-1373.786	169.879	-0.000	
2	13371.424	-458.024	169.879	-0.000	
3	12394.420	-964.363	169.879	-0.000	
1	1 Add Update Remove Remove All				
Move	Move to Up Down Load Save				
Objective lowered when moving stage					
Scan overview image					

Position experiment stores also z-coordinate, so it is possible to do z-stack on multiple positions.

Regions

Scans sample only in selected regions

- 1) Mark Regions experiment
- 2) Select region (you can use different shapes) (1)
- 3) Draw the ROI (region of interest) on image (2)
- 4) Select actions for every ROI (3)
 - a) Acquisition common image scanning
 - b) Bleach bleach selected region (further setting in Bleaching experiment)
 - Analysis select which region will be used for analysis
- 5) Start it by snap (not Start experiment button!)

👻 🔄 Regions	🗸 Show all			
	0 0 9	Delete	🔲 Hide	
# Туре			Analysis	П
1	✓		V	
2	\checkmark		\checkmark	
Center X	10			
Center Y	-9 🛟			
Width	99 ‡			
Height	65 🛟			
Line width	1 -			
Color				
Color Mode	Automatic assignment	-		
Creation Mode	Switch to selection mod	le 👻		
Fit frame size to bounding rectangle of regions				
Show numbers				
Load	Save			